Singapore University of Social Sciences

Artificial Intelligence, Machine Learning, and Deep Learning in Finance 金融领域的人工智能、机器学习和深度学习

Artificial Intelligence, Machine Learning, and Deep Learning in Finance 金融领域的人工智能、机器学习和深度学习 (FTH521)

Synopsis

FTH521 Artificial Intelligence, Machine Learning, and Deep Learning in Finance constructs a framework to explore and master the intricate mechanisms underpinning data analysis, predictive modelling, and financial process automation. This curriculum delves into a comprehensive array of sophisticated techniques, algorithms, and models that demystify the complexities of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). It encompasses an in-depth study of advanced supervised and unsupervised ML models, the architecture and functionality of artificial neural networks (ANN), convolutional neural networks (CNN), long short-term memory networks (LSTM), generative adversarial networks (GANs), and cutting-edge natural language processing (NLP) techniques. By harnessing and synthesizing these technologies, students are empowered to extract pivotal insights, augment operational efficiency, and formulate more precise, data-driven strategies to catalyse financial success. FTH521 金融中的人工智能、机器学习和深 度学习致力于构建包括数据分析、预测建模和金融流程自动化的框架体系,深入浅出地探 讨有关人工智能(AI)、机器学习(ML) 和深度学习(DL) 的一系列技术、算法和模型, 涵盖 了对高级监督和无监督机器学习模型、人工神经网络(ANN)、卷积神经网络(CNN)、长短 期记忆网络(LSTM)、生成对抗网络(GAN) 的架构和功能的深入研究,以及最前沿的自然 语言处理(NLP)技术。本课程旨在帮助学生了解和整合这些技术,培养从数据中挖掘关 键信息、提高运营效率,并制定更精确的数据驱动策略以促进金融成功的能力。

Level: 5
Credit Units: 5
Presentation Pattern: EVERY JULY

Topics

  • Fundamentals of AI and Machine Learning in Finance 金融领域人工智能和机器学习的基础 知识
  • Advanced Supervised Learning Techniques for Financial Modelling 金融建模的高级监督学习技术
  • Unsupervised Learning and Its Applications in Finance 无监督学习及其在金融中的应用
  • Designing Artificial Neural Networks for Financial Analysis 为金融分析设计人工神经网络
  • Convolutional Neural Networks in Financial Data Processing 金融数据处理中的卷积神经网络
  • Long Short-Term Memory Networks for Time-Series Analysis in Finance 用于金融时间序列分析的长短期记忆网络
  • Utilizing Generative Adversarial Networks in Financial Strategies 在金融策略中利用生成对抗网络
  • Natural Language Processing for Financial Market Insights 应用于金融市场的自然语言处理
  • Predictive Modelling and Data-Driven Financial Decision Making 预测建模与数据驱动的金融决策
  • Operational Efficiency Enhancement through AI and ML 通过人工智能和机器学习提升运 营效率
  • Ethical Considerations and Challenges in AI for Finance 金融人工智能的道德考虑和挑战
  • Emerging Trends and Future Directions in AI and Finance 人工智能和金融的新兴趋势和未来方向

Learning Outcome

  • Select strategies using generative adversarial networks (GANs) and natural language processing (NLP) to enhance financial decision-making 选择使用生成对抗网络(GAN) 和自然语言处理(NLP) 的策略,以增强金融决策能力
  • Critique the effectiveness of various deep learning models in extracting insights and augmenting operational efficiency in finance 评估各种深度学习模型在挖掘关键信息和 增强金融运营效率方面的有效性
  • Appraise the impact of AI and machine learning technologies on the future landscape of the financial industry 评估人工智能和机器学习技术对未来金融行业格局的影响
  • Value the application of AI, ML, and DL techniques in financial data analysis and predictive modelling 评估人工智能、机器学习和深度学习技术在金融数据分析和预 测建模中的应用
  • Construct models using advanced supervised and unsupervised machine learning algorithms 使用高级监督和无监督机器学习算法构建模型
  • Design and implement artificial neural networks, including CNNs and LSTMs, for financial process automation 设计和实施卷积神经网络(CNN)和长短期记忆网络 (LSTM)等人工神经网络用于金融流程自动化
Back to top
Back to top