Singapore University of Social Sciences

Statistical Modelling and Quantitative Methods in Tech-Driven Finance 技术驱动的金融统计建模与量化

Statistical Modelling and Quantitative Methods in Tech-Driven Finance 技术驱动的金融统计建模与量化 (FTH512)

Applications Open: To be confirmed

Applications Close: To be confirmed

Next Available Intake: To be confirmed

Course Types: To be confirmed

Language: Chinese

Duration: 6 months

Fees: To be confirmed

Area of Interest: To be confirmed

Schemes: To be confirmed

Funding: To be confirmed

School/Department: School of Business


Synopsis

FTH512 Statistical Modelling and Quantitative Methods in Tech-Driven Finance serves as an intellectual crucible, immersing students in a sophisticated framework for decision-making underpinned by empirical evidence and rigorous analysis. In the realm of modern finance, where decisions are increasingly data-dependent, the mastery of quantitative methods is paramount. This course transcends conventional statistical paradigms, delving into the intricacies of statistical inference, hypothesis testing, and regression, while also navigating the realms of Boolean algebra, modular arithmetic, matrix operations, and cluster analysis. By utilizing these methods effectively, students will be able to make informed decisions, solve complex problems, and draw meaningful conclusions from complex datasets across multiple fields, including business, economics, finance, Fintech, and social sciences. FTH512 技术驱动的金融统计建模与量化旨在帮助学生体验以实 证证据和严格分析为基础的复杂决策框架。在现代金融领域,决策越来越依赖于数据支持, 掌握定量方法至关重要。该课程超越了传统的统计范式,深入探讨了统计推断、假设检验 和回归的复杂性,同时也涉及布尔代数、模算术、矩阵运算和聚类分析领域。学生将学习 如何通过有效运用这些方法做出明智的决策,解决复杂问题,并从跨商业、经济、金融、 金融科技和社会科学等多个领域的复杂数据集中得出有意义的结论。

Level: 5
Credit Units: 5
Presentation Pattern: EVERY JULY

Topics

  • Advanced Techniques in Statistical Inference for Finance 金融统计推断的进阶技巧
  • Regression Analysis in Economic and Fintech Applications 经济和金融科技应用中的回 归分析
  • Boolean Algebra in Financial Modelling 金融建模中的布尔代数
  • Modular Arithmetic and Its Applications in Cryptocurrency Analysis 模算法及其在加密 货币分析中的应用
  • Matrix Operations for Financial Data Analysis 金融数据分析的矩阵运算
  • Cluster Analysis in Market Segmentation and Risk Assessment 市场细分与风险评估中 的聚类分析
  • Hypothesis Testing in Empirical Financial Research 实证金融研究中的假设检验
  • Quantitative Methods for Predictive Financial Modelling 预测性金融建模的定量方法
  • Statistical Modelling in Business Decision-Making 商业决策中的统计建模
  • Application of Quantitative Methods in Social Science Research 定量方法在社会科学研 究中的应用
  • Data-Driven Strategies for Financial Market Analysis 金融市场分析的数据驱动策略
  • Innovative Approaches to Tech-Driven Financial Analysis 技术驱动的财务分析创新

Learning Outcome

  • Appraise the role of hypothesis testing in concluding empirical data 评估假设检验在总结 实证数据方面的作用
  • Critique the use of matrix operations and cluster analysis in business and social sciences 评估矩阵运算和聚类分析在商业和社会科学中的应用
  • Evaluate the effectiveness of statistical inference techniques in financial decision-making 评估统计推断技术在金融决策中的有效性
  • Predict financial trends by synthesizing information from quantitative methods and statistical modelling 通过综合定量方法和统计建模的信息来预测金融趋势
  • Construct models using Boolean algebra and modular arithmetic to solve problems in modern finance 使用布尔代数和模算术构建模型,解决现代金融中的问题
  • Formulate strategies for applying regression analysis to complex datasets in Fintech and economics 制定将回归分析应用于金融科技和经济学复杂数据集的策略
Back to top
Back to top